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Abstract
We depict the quantum collision between a stable helium nanodrop and an
infinitely hard wall in one dimension. The scattering outcome is compared
to the same event omitting the quantum pressure. Only the quantum process
reflects the effect of diffraction of wave packets in space and time.

PACS numbers: 03.65.Nk, 31.15.Ew, 42.25.Fx, 67.20.+k

1. Introduction

In recent years we have described the effect named diffraction of wave packets in space and
time. The effect consists of a multiple peak wave train that is generated in a scattering event
by the interference between the incoming and the scattered packets. The wave train lasts to
infinite time, due to the spreading of the incoming packet, which catches up with the scattered
packet [1–6].

The effect occurs in matter wave scattering. It persists only for narrow enough packets
compared to the scatterer extent. The effect was demonstrated numerically and analytically
in various settings. As a possible laboratory experiment to verify the effect experimentally
we suggested a collision between a helium drop and a reflecting wall [3]. In [3] we omitted
completely the self-interaction of the drop. The impinging packet that statistically represented
the behaviour of the drop was taken as a Gaussian packet, for which we could provide exact
analytical expressions. However, the self-interaction provides the binding energy of the drop
and hinders spreading, which is crucial for the appearance of the diffraction pattern. A more
realistic calculation was needed.

Helium is a relatively weakly bound liquid, even close to 0 K. It is weaker than liquid water
or other liquids at ambient temperature. The binding energy per 4He atom in the superfluid
phase is around Eb = −7.5 K [8] whereas for liquid water it is around −5500 K, depending
on the temperature and pressure.

The helium atoms are neutral and do not benefit from strong hydrogen-like bonds for
their binding. The apparent weakness of the interactions is nevertheless misleading. A helium
drop interacts with itself in a much stronger manner than a Bose–Einstein condensate (BEC)
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[7], and even there the nonlinear effects of the self-interaction are important. In particular the
interatomic forces dominate the so-called quantum pressure or quantum potential in the bulk
of the drop. Inside the drop the density is constant and the quantum pressure vanishes. Near
the edge of a drop, curvature effects take over and the quantum pressure becomes relevant.

In the present work we investigate numerically the quantum scattering of a helium droplet
bouncing off an infinitely hard wall. The aim is twofold: firstly an investigation like the present
has never been carried out before and it is interesting in its own merit and, secondly we would
like to have a more realistic treatment of the diffraction of wave packet effect in the context of
liquid helium.

In order to simplify the treatment as much as possible we resort to the density functional
approach.

Density functional theories resort to the solution of a one-body nonlinear Schrödinger
equation for a particle of mass m,

i
∂ψ

∂t
= − 1

2m
�∇2

ψ + [O(|ψ |2) + U(�r)]ψ (1)

where O(|ψ |2) is a nonlinear and sometimes nonlocal [8] functional of the density ρ = |ψ |2,
and U(�r) an external potential. The commonly used mean-field equation for BEC systems
belongs to this class of equations [7]. In this case it is referred to as the Gross–Pitaevskii
equation.

Density functional theory has been extremely successful in reproducing the properties
of helium nanodroplets [8]. Besides the mean binding energy per particle, average density,
incompressibility and surface tension at zero temperature both for 4He and 3He, in a stationary
state [9], it accounts for capillary effects at low temperatures [10], the phase diagram of
liquid–vapour coexistence [11], as well as the excitation spectrum (phonon–maxon–roton) of
liquid helium [8]. The model has been verified experimentally in scattering reactions [12]. It
is currently being applied to other areas of superfluid dynamics such as electron bubbles [13],
adsorption on plates of alkali metals [14], vortex line pinning [15], etc.

The density functional theory is therefore a respectable method for the treatment of
helium nanodroplet scattering. In the next section we present results for the scattering of
helium nanodroplets in one dimension with and without the quantum potential. The last
section provides some comments emerging from the observation of the numerical data.

2. A helium drop colliding with a wall

A nonlinear, local, self-interaction of the helium drop was proposed some time ago by Stringari
and Treiner [9]. The parameters of the density functional were fitted to the known values of
the binding energy per atom in the bulk, the incompressibility, the infinite atom–matter density
and the surface tension. Improvements to this functional seem to require nonlocal terms [7].
Such terms are engineered to reproduce the excitation spectrum of liquid helium below the λ

transition point in a more accurate manner. In the present work we opt for the local version
that is more manageable computationally and still quite successful phenomenologically.

The operator O(ρ) of equation (1) is given by

O(ρ) = bρ +
c

4
(4 + 2γ )ρ1+γ − 2d �∇2

ρ (2)

with b = −888.81 K Å, c = 1.045 54 107 K Å
3+3γ

, γ = 2.8, d = 2383 K Å
5
.

For the one-dimensional case treated presently we use the same parameter set, assuming
independence from the y, z directions, i.e. an infinite planar slab.
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Figure 1. Density profile of a helium drop in Å
−3

for ρ(x = 0) = 0.021 835 99 Å
−3

as a function
of distance in Å.

The stationary solutions of equation (1) with the self-interaction of equation (2), in one
spatial dimension are obtained from the substitution �(x, t) = eiµ tφ(x), with µ being the
chemical potential. For finite size drops, µ is a parameter, whose value determines the number
of particles in the drop and tends to the bulk binding energy when the number of particles
tends to infinity. For 4He, it is µ∞ = −7.15 K.1

Stationary solutions are found by integrating the equation [9]

µ = bρ +
2 + γ

2
cρ1+γ −

(
2d +

1

4mρ

)
d2ρ

dx2
+

( dρ

dx

)2

8mρ2
(3)

or equivalently (
dρ

dx

)2

= 8mρ

8mρd + 1

(
−µρ +

bρ2

2
+

cρ2+γ

2

)
. (4)

The integration of equation (4), proceeds by a choice of ρ(x = 0) < ρ(x = 0)∞ =
0.021 836 Å

−3
, the bulk helium liquid density for atomic matter. Equation (4), with

dρ

dx

∣∣
x=0 = 0, fixes the value of the chemical potential µ > µ∞. The numerical roundoff error

limits the possibilities of approaching ρ(x = 0)∞ closer than 10−7 and still obtain a profile
density that decays at infinite distances. We therefore chose the closest value we could and
used this profile density in all the scattering events to be presented below. The parameter for
this density profile is ρ(x = 0) = 0.021 835 99, which yields µ = −6.71 K. The number of
particles per unit area

N =
∫ ∞

−∞
dx ρ(x) (5)

for this case is N = 1.288 Å
−2

, or an effective length Xeff = N/ρ(x = 0) = 59 Å. The drop
then extends some 59 Å along the x axis and is infinite along the y, z plane. The solution in
the three-dimensional case is not much different; in this case, the drop contains around 4500
atoms. Figure 1 shows this initial density profile.

1 The transformation to standard energy units proceeds by multiplication with Boltzmann’s constant k.
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Figure 2. |�| as a function of distance in units of Å for various velocities and times.

The details of the scattering are not very sensitive to the number of particles and the
extension of the drop. The majority of the particles reside within the bulk. The diffraction
effects depend on the side wings of the distribution in figure 1 and are therefore almost the
same for any number of particles, because the width of these wings is determined by the
parameters of the nonlinear potential only.

In the next section we will show results for smaller size drops whose profile resembles a
Gaussian. For such drops the interference effect is cleaner, but not qualitatively different.

The scattering starts with a drop impinging from the left onto an infinitely hard wall
located to the far right. We took a drop centred at x0 = 110 Å with velocity v, defined by

ψ(x, t = 0) = eimv(x−x0)
√

ρ(x). (6)

The wall is located at x = 150 Å. We use a five-step predictor corrector method [13] for
the numerical integration. We demand an accuracy of more than 0.1% in both the conservation
of normalization of the wave and the energy. This strict demand requires a tiny time step of
around 10−17 s, and consequently lengthy runs of around 107 iterations. A larger time step
causes rapid deterioration of the accuracy and runaway behaviour. A tiny time step is needed,
due to the large values of the constants entering the self-interaction.

It was found that for packet velocities below around v = 50 m s−1 the drop collides with
the wall elastically with a barely noticeable distortion. Such a threshold corresponds to a
momentum transfer per particle at the wall of the order of �p = 2mv ≈ 0.62 Å

−1
. This is a

typical value for the excitation of ripplons at the surface of a drop [16].
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Figure 3. Time snapshots of |�| as a function of distance in units of Å for v = 65.78 m s−1.

The drop travels without strictures, hence there is no superfluid limiting velocity, and it
can remain superfluid up to any velocity; in practice the drop flows over a surface that limits
the maximum frictionless speed. The experiment may also be viewed as the one in which the
wall is moved crashing into the stationary drop. We have performed such calculations in order
to check our numerical schemes, and found them to agree with the results of a moving packet
and a fixed wall as expected.

Figure 2 exemplifies the result of the scattering for various velocities and times, such that
�x = vt , for all of them is the same in the free case. Above the threshold velocity there appears
a multiple peak structure that recedes faster than the packet. It resembles the diffraction in
space and time structures given in [1–6]. For high enough velocities, the collision is inelastic.
The energy is transferred to waves that recede faster than the bulk of the drop. The drop is
almost stalled at the wall. In the bottom graph of figure 2, the collision process is still under
way and the multiple peak structures are still being generated. There is a background hump
under the peaks in the middle graph. This elevation is an incoherent background, similar to
that occurring in the diffraction in space and time phenomenon [1–6] for wide packets. In the
next section we show graphs for a thinner drop, for which the background is almost absent.

Figure 3 shows the evolution of the scattering process for a velocity of v = 65.78 m s−1.2

The density fluctuations inside the packet due to the collision are progressively expelled
out of the drop. This multiple peak tail wave, is a product of both the incoming and the
reflected waves interfering with each other.

In order to confirm the hypothesis that the interference effects are responsible for the
multiple peak structures, we performed parallel calculations for the analogous classical drop,

2 The awkward value of the velocity originates from a convenient choice of time units.
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Figure 4. |�| as a function of distance in units of Å for various velocities and times for the classical
case.

by subtracting the quantum potential in the Schrödinger equation. In equation (1) O(ρ) is
replaced by O(ρ) − Uquantum, with

Uquantum = − 1

2m
√

ρ

d2√ρ

dx2
.

For the classical scattering case, we use the same initial profile as that depicted in
figure 1, although it is not a stationary solution with the quantum potential subtracted. As a
matter of fact there are no stationary solutions without the quantum potential. This may be
easily seen by expanding around the vacuum.

Such an expansion produces the equation

d2ρ

dx2
= b

2d
ρ (7)

whose solutions are oscillatory, with the density becoming eventually negative.
Figure 4 depicts the classical scattering graphs corresponding to the quantum events of

figure 2. As is evident from the figure, the classical collision does not produce a multiple peak
tail. The collision results in large density fluctuations in the bulk and noisy fluctuations at the
edges.

The corresponding classical packet evolution for v = 65.78 m s−1 is shown in figure 5.
The quantum scattering resists distortions in the bulk and gets rid of the energy in the

form of coherent wave trains, whereas the classical scattering that lacks the quantum potential
curvature-like term, renders the packet softer to deformations. The coherence of the tail region
is visualized in figure 6. The classical scattering phase at the bottom is coherent inside the



A helium nanodrop bouncing off a wall 2787
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Figure 5. Time snapshots of |�| as a function of distance in units of Å for v = 65.78 m s−1 for
the classical case.
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Figure 7. Quantum versus classical scattering for v = 65.78 m s−1, ρ(x = 0) = 0.02 Å
−3

,
enlargement of tail region. |�| as a function of distance in units of Å.

drop corresponding to a travelling packet of fixed velocity, and incoherent or even random at
the surface. The quantum phase is coherent both inside and outside (only part of the outside
region is shown). The wavelength outside the bulk of the drop in the upper graph, for x < 70 Å
is smaller than the wavelength in the bulk. The multiple peak tail recedes faster than the drop.

3. Conclusions

We have provided snapshots illustrating the behaviour of a helium nanodrop treated by means
of the density functional approach, in a collision event with a hard wall. The numerical results
confirm that the effect of diffraction of wave packets in space and time does express itself in
4He nanodrop scattering. The results for a thick drop presented in the last section are not as
clean as those of [3]. A thick drop has a sizeable self-interaction and tends to conserve its
shape in the collision. To enhance the effect, we also considered smaller size drops. Using
ρ(x = 0) = 0.02 Å

−3
, the number of particles per unit area is now N = 0.26 Å

−2
, and the

effective extent is Xeff = 12.5 Å. A three-dimensional drop of this type contains around 40
atoms.

Figure 7 depicts the classical and quantum scattering results for a velocity of v =
65.78 m s−1 at t = 60.8 ps in the tail region. The asymptotic behaviour of the quantum
event is much cleaner than that of the thicker drop depicted in the previous section.

The existence of a diffraction tail is expected for the collision of a quantum packet with a
barrier [1–6]. The present work shows that, even for self-interacting quantum systems, such as
a helium nanodrop, the effect persists, being more marked the smaller the number of particles
in the packet. In summary, it appears that it could be possible to observe the diffraction
phenomenon described in [1–6] with 4He nanodrops by colliding them with a hard surface at
high enough speed.
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